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Higher-order upwind leapfrog methods for multi-dimensional
acoustic equations
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305-333; South Korea

SUMMARY

A non-dissipative and very accurate one-dimensional upwind leapfrog method was successfully extended
to higher-order and multi-dimensional acoustic equations. The governing equations in characteristic form
and staggered grid were utilized to preserve the accuracy. Fourier analysis was performed to �nd the
accurate scheme for acoustics and the resultant two-dimensional methods were successfully applied to
several classical test cases. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Sound propagation is represented by the unsteady linearized Euler equations and characterized
as long-range propagation of high-frequency waves, so that all numerical schemes to simulate
the sound propagation would have very low dissipation and few dispersion errors. Otherwise,
acoustic wave will be dissipated mostly and located in the wrong place after traveling over
several wavelengths.
Recently, several higher-order numerical schemes have been developed for precise eval-

uation of acoustic wave [1] and one of them is the upwind leapfrog scheme, whose one-
dimensional advection version was proposed by Iserles [2]. Compared to the regular leapfrog
method, the upwind leapfrog scheme is more compact and accurate because it is combined
with upwind bias. Roe et al. [3] further investigated the upwind leapfrog scheme to evalu-
ate the applicability of this method to linear high-frequency wave propagation problems in
acoustics=aeroacoustics, electromagnetics and elastodynamics, etc. Roe and Thomas [4] de-
veloped the fourth-order scheme by extending the stencil in space and time domain as well

∗Correspondence to: Cheolwan Kim, Aerodynamics Department, Korea Aerospace Research Institute, 45 Eoeun-
Dong, Youseong-Gu, 305-333 Daejeon, South Korea.

†E-mail: cwkim@kari.re.kr
‡ Senior Researcher.

Received 16 September 2002
Copyright ? 2004 John Wiley & Sons, Ltd. Revised 5 August 2003



506 C. KIM

as multi-dimensional second-order scheme for linear wave system, especially for acoustics by
using the bicharacteristic theory. They devised the staggered grid technique storing values at
the cell edge not to introduce any numerical dissipation error [5]. Meanwhile, Nguyen and Roe
compared phase properties of multi-dimensional upwind leapfrog method and Yee’s standard
leapfrog method for acoustics and electromagnetics [6]. Thomas, then developed a fourth-
order version of the upwind leapfrog method for acoustic wave simulation but its application
is limited because of its stability problem. In this paper, this limitation is resolved and a
higher-order scheme, stable even on non-square grid, is extended to the system of equations
expressed in polar co-ordinates.
The development of multi-dimensional upwind leapfrog schemes for acoustics and staggered

grid strategy are explained in Section 2. In Section 3, a higher-order upwind leapfrog scheme
for acoustics is demonstrated with a solution to its stability problems. The higher-order scheme
described here is stable on even non-square Cartesian grid and it can be applied to acoustics
in polar co-ordinates. The second- and fourth-order upwind leapfrog schemes are tested for
well-known test cases.

2. MULTI-DIMENSIONAL ACOUSTICS

Multi-dimensional acoustics is also represented by the linearized Euler equations. The equa-
tions having pressure and velocity �uctuations (p; u=[u; v; w]) are

@p
@t
+ �0a20∇ · u=0

@u
@t
+
1
�0

∇p=0
(1)

where �0 and a0 are steady state values of density and speed of sound.

2.1. Characteristic form of equations

To develop the upwind leapfrog method for acoustics, the system of Equations (1) is arranged
in characteristic form which is quite similar to the advection equation, because characteristic
form of equation clari�es wave propagation direction. A system of equations in N -dimensional
space can be written in vector form as follows.

Ut +
∑

16d6N
Ad · @U@xd =0 (2)

To study wave propagation in the direction x1, this equation was multiplied by l1, a
left eigenvector of A1 having eigenvalue �1. This multiplication rotates the co-ordinate
to be aligned with the arbitrary direction of interest, x1. The result, called a characteristic
equation, is (

@
@t
+ �1

@
@x1

)
(l1U) +

∑
26d6N

l1Ad
@U
@xd

=0 (3)
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In two-dimensional acoustics, the variables x, U and the constant matrices A1 and A2 are

x=

[
x

y

]
; U=



p

u

v


 ; A1 =



0 �0a20 0

1=�0 0 0

0 0 0


 ; A2 =



0 0 �0a20

0 0 0

1=�0 0 0




The eigenvalues of A1 are �=± a0; 0. The eigenvector corresponding to �=0 does not produce
any interesting result, but the remaining other eigenvectors, (1;±�0a0; 0) yield the following
characteristic equations.

@
@t
(p±�0a0u)± a0 @@x (p±�0a0u)= − �0a20vy (4)

These are the characteristic equations for plane waves traveling in the ± x-directions. The
characteristic equations for waves traveling in the ±y-directions are

@
@t
(p±�0a0v)± a0 @@y (p±�0a0v)= − �0a20ux (5)

For a wave moving in arbitrary direction, the characteristic equation is generated by multi-
plying the system (2) by l=(1; �0a0 cos �; �0a0 sin �).

(
@
@t
+ a0 cos �

@
@x
+ a0 sin �

@
@y

)
[p+ �0a0(u cos �+ v sin �)]

= − �0a20
[(
sin �

@
@x

− cos � @
@y

)
(u cos �− v sin �)

]
(6)

When �=0 or �, the above equation is simpli�ed to Equation (4). For any direction �,
the left-hand side of the above characteristic equation (6) is a one-dimensional characteristic
equation along a generator of the Mach cone

dx2 + dy2 = a20 dt
2

and the right-hand side is the derivative tangential to the cone. Figure 1 shows the Mach cone
and the characteristic plane for the wave moving in the positive x-direction.

x
y

t

Figure 1. Characteristic planes for wave moving in the positive x-direction.
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2.2. Second-order upwind leapfrog scheme

Characteristic equations aligned along x- and y-axis are used as the governing equations of
two-dimensional acoustics and expressed as follows.

@
@t
(p±�0a0u)± a0 @@x (p±�0a0u)= − �0a20

@v
@y

(7)

These are the characteristic equations for plane waves traveling in the ± x-directions. The
characteristic equations for waves traveling in the ±y-directions are

@
@t
(p±�0a0v)± a0 @@y (p±�0a0v)= − �0a20

@u
@x

(8)

Since the left-hand sides of the above equations resemble one-dimensional advection equation,
they can be discretized in the same way as the one-dimensional scheme. The right-hand
sides are discretized by central di�erencing. As a typical di�culty encountered in application
of characteristic equations, three unknown variables should be updated in two-dimensional
acoustics although the characteristic method provides four relations and the pressure is updated
twice. Two pressures are identical analytically but may be di�erent in numerical computation.
Two methods are presented in this section for the discretization of the characteristic methods.
For convenience the variables p; u; v are non-dimensionalized and steady values of density
and speed of sound �0; a0 are set to unity.
The �rst method is to discretize the equations on uniform grid which stores every solution

at cell node. The characteristic equation aligned in the positive x-direction is discretized as
following Equation (9) on the stencil as illustrated in Figure 2(a).

�t(p+ u)
n+1=2
j; k + �t(p+ u)

n−1=2
j−1;k + 2�x�x(p+ u)

n
j−1=2;k + 2�y�x�y�yvj−1=2; k =0 (9)

where �x=�t=�x, �y=�t=�y. Also the di�erencing and averaging operators are

�twnj; k =w
n+1=2
j; k − wn−1=2j; k ; �twnj; k =

1
2
(wn+1=2j; k + wn−1=2j; k )

�xwnj; k =w
n
j+1=2; k − wnj−1=2; k ; �xwnj; k =

1
2
(wnj+1=2; k + w

n
j−1=2; k)

�ywnj; k =w
n
j;k+1=2 − wnj; k−1=2; �xwnj; k =

1
2
(wnj; k+1=2 + w

n
j; k−1=2)

Other characteristic equations are also discretized in the same way. For example, the �nite
di�erence equation for (p− u) wave is

�t(p− u)n+1=2j; k + �t(p+ u)
n−1=2
j+1; k − 2�x�x(p− u)nj+1=2; k + 2�y�x�y�yvj+12; k =0 (10)

Equations (9) and (10) are used to update p and u. Two other equations not shown here
are used to update p and v. Two pressures updated in di�erent ways are not identical and
averaged. This averaging, however destroys the time-reversibility of the overall scheme and
introduces some dissipation.
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Figure 2. Stencils of second-order upwind leapfrog methods: (a) uniform grid; and (b) staggered grid.

The second method developed by Roe and Thomas [4], is to utilize the staggered grid
storing the variables as shown in Figure 2(b). The pressure updated with u is stored with u
and the other pressure with v is stored with v. The pressure updated with v is described as q
for convenience. Therefore, the characteristic equations are

@
@t
(p± u)± @

@x
(p± u)= − @v

@y
(11)

@
@t
(q± v)± @

@x
(q± v)= − @u

@x
(12)

and discretized on the staggered grid, illustrated in Figure 2(b) as follows.

�t(p+ u)
n+1=2
j+1=2; k + �t(p+ u)

n−1=2
j−1=2; k + 2�x�x(p+ u)

n
j; k + 2�y�yvj; k =0

�t(p− u)n+1=2j−1=2; k + �t(p− u)n−1=2j+1=2; k − 2�x�x(p− u)nj; k + 2�y�yvj; k =0

�t(q+ v)
n+1=2
j; k+1=2 + �t(q+ v)

n−1=2
j; k−1=2 + 2�y�y(q+ v)

n
j; k + 2�x�xuj; k =0

�t(q− v)n+1=2j; k−1=2 + �t(q− v)n−1=2j; k+1=2 − 2�y�y(q− v)nj; k + 2�x�xuj; k =0

(13)

This method eliminated the averaging of pressures and updated the solutions without any
dissipation. Furthermore, the staggered grid provides a compact stencil, which is considered
as another advantages of the staggered grid compared to the uniform grid.

2.3. Error analysis

For error analysis, solutions are assumed to have the form



p

u

v


 (x; y; t)=



P

U

V


 exp[i(!t − kxx − kyy)]=



P

U

V


 exp

[
i
(
�t
�t

− �xx
�x

− �yy
�y

)]
(14)
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Figure 3. Eigenmodes of second-order upwind leapfrog method, �x= 1
4 ; �y=

1
2 ; �x=3�=5; �y=4�=5.

(a) Uniform grid, (b) Staggered grid.

where �=! ·�t; �x= kx ·�x; �y= ky ·�y and [P;U; V ]T are magnitudes of [p; u; v]T. Sub-
stituting the above relations into Equations (1) yields the exact phase speed �e as

�e=


 0

±
√
�2x�2x + �2y�2y


 (15)

The �rst solution, �e=0 represents vorticity mode. The second and third ones represent the
exact phase speeds of acoustic modes moving forward and backward.
To investigate the structure of eigenmodes, the ampli�cation factors, exp(i�) are drawn

on complex domain for given Courant numbers and Fourier angles because � is a complex
number (�=�r + i�i). Figure 3 shows the eigenmodes when �x= 1

4 , �y=
1
2 , �x=3�=5 and

�y=4�=5. The square and circle symbols represent the analytic and numerical eigenmodes,
respectively. An eigenmode lying on the unit circle indicates that its ampli�cation factor is
unity and it is updated without dissipation. The abscissa and ordinate of Figure 3 are the real
and imaginary part of exp(i�) respectively. Figure 3(a) shows the eigenmodes of the second-
order scheme on a uniform grid. Some modes lying inside unit circle show that averaging two
pressures updated by di�erent schemes does indeed introduce dissipation. Every eigenmode
of the staggered grid, however lies on the unit circle, Figure 3(b) and updates the solution
without any dissipation. To investigate properties of the scheme, we focus on the forward-
moving acoustic wave whose exact phase should be �e=

√
�2x�2x + �2y�2y: The dissipation and

dispersion errors are de�ned as

D(%)= [1− (exp(−�i))N=�]× 100; (16)

E(%)=
(

�r
�e(= �x�x + �y�y)

− 1
)

× 100 (17)

Courant numbers are �x= �y= 1
3 and the wave front direction which is de�ned as tan

−1(ky=kx)
and denoted by 	, is varied from the positive x-axis to the positive y-axis. Therefore the
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Figure 4. Dissipation errors of three-level second-order upwind leapfrog method. �x= �y=1=3.
(a) Uniform grid, (b) Staggered grid.

Fourier angles �x and �y, cells-per-wavelength N and wave front angle 	 have the following
relations.

�x=
2�
N
cos 	; �y=

2�
N
sin 	 (18)

Numbers 4, 8 and 16 are chosen for N to clarify the accuracy trend. Figure 4 shows the
dissipation errors of the uniform and staggered grid. As con�rmed from the eigenmode plot,
Figure 4(a) the uniform grid scheme is dissipative and shows the highest dissipation when
the wave front direction is parallel to the coordinates. Averaging two pressure modes may
behave like a blending function. However, the staggered grid technique does not show any
dissipation error, Figure 4(b).
Compared with the uniform grid, the staggered grid technique has some nice properties

justifying further development of the upwind leapfrog scheme for multi-dimensional acous-
tics. They are (1) improving resolution, (2) making the stencil compact and (3) having no
dissipation error.

2.4. Higher-order upwind leapfrog methods

To develop higher-order scheme, the stencil of the second-order scheme, Figure 2(b) was
extended in either time or space as done in one-dimension. Extending in time domain provides
some degrees of freedom which cancel out the second-order truncation error terms of the
modi�ed equation. However the additional degrees of freedom are not su�cient to eliminate
every error term and the resultant scheme is still second-order although this extension improves
the resolution.
The stencil for the wave moving in the positive x-axis is shown in Figure 5(a) and the

di�erence equation is

c1[�t(p+ u)n+1j+1=2; k + �t(p+ u)
n−1
j−1=2; k] + c2[�t(p+ u)

n
j+1=2; k + �t(p+ u)

n
j−1=2; k]

+ �x�t�x(p+ u)nj; k + �y�t�yv
n
j; k =0 (19)
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Figure 5. Stencils of higher-order upwind leapfrog schemes for the wave moving in pos-
itive x-axis: (a) four-level second-order compact stencil; and (b) three-level fourth-order

space-extended stencil.

where c1 = (�x + 1)=6�x, c2 = (5�x − 1)=6�x and they are determined by eliminating a second-
order error term, @3p=@x3.
Other characteristic equations can be discretized in a similar way. The remaining second-

order error terms of the above scheme (19) is

−�t
2

24

(
2
�x

@3q
@x@y2

− 2
�x

@3u
@x@y2

− 1
�2x

@3v
@x2@y

+
�x − 2�2y
�x�2y

@3v
@y3

)
(20)

and these terms are derived by replacing the time-derivative terms with the space-derivative
terms. The governing equations provide the relations of even higher-order derivative terms(Lax-
Wendro� type derivation). More degrees of freedom are required to discretize these terms.
Additional extension in time however, does not achieve the fourth-order accuracy and it is
not considered here.
Although extending the second-order stencil in space sacri�ces the comapctness, it is cur-

rently the only way to increase the order of accuracy up to four that we have found. This
scheme has di�culty in applying at computational boundaries but its excellent phase property
makes the use of this scheme for the interior points very attractive. Developing a three-level
fourth-order scheme would be straightforward if stability were not an issue. The second-order
scheme for (p+ u) wave with the second-order error terms is

�t(p+ u)
n+1=2
j+1=2; k + �t(p+ u)

n−1=2
j+1=2; k + 2�x(p+ u)

n
j; k + 2�yv

n
j; k

= − cpxxx�x3
@3p
@x3

− cqxyy�x�y2
@3q
@x@y2

− cuxxx�x3
@3u
@x3

− cuxyy�x�y2
@3u
@x@y2

− cvxxy�x2�y
@3v
@x2@y

− cvyyy�y3
@3v
@y3

(21)

where

cpxxx =
1
6
(2�3x − 3�2x + �x); cqxyy =

2
3
�2y(2�x − 3)
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cuxxx =
1
6
(2�3x − 3�2x + �x); cuxyy =

1
3
�x�2y

cvxxy =
1
12
�y(4�2x − 6�x + 3); cvyyy =

1
12
�y(4�2y − 1)

Then discretizing the second-order errors and moving them to the left-hand side increase the
order of accuracy. The discretization is not unique and Thomas [8] suggested the following
choices.

�x3
@3p
@x3

= �3xp
n
j; k ; �x3

@3u
@x3

= �3xu
n
j; k ; �x�y2

@3u
@x@y2

= �x�2yu
n
j; k

�x�y2
@3q
@x@y2

= �x�y�x�2yq
n
j; k ; �x2�y

@3v
@x2@y

= �2x�y�
2
yv
n
j; k ; �y3

@3v
@y3

= �3yv
n
j; k

(22)

It was revealed during the test of this scheme, however, that it was unstable on a non-
square grid, i.e. �x �=�y. Figure 6(a) shows the eigenmodes of that case. Two eigenmodes
on the real axis are stationary and the product of their ampli�cation factors is always one, say
|g1| · |g2|=1. The mode marked outside the unit circle ampli�es the mode excited by even
round o� error and makes it overwhelm the physical solution. Typically, a region of local
instability occurs whose amplitude grows rapidly while others are remaining quite locally
in space. A smoothing operator was devised to resolve the instability problem. An ideal
smoothing operator should be one that attacks only the spurious modes, leaving the physical
modes unchanged. Since observations showed the errors to be associated with vorticity, we
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Figure 6. Eigenmodes of fourth-order upwind leapfrog methods: (a) original dis-
cretization; and (b) corrected discretization for second-order truncation error terms.

�x=1=4; �y=1=2; �x=9�=10; �y=�.
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attempted a damping based on

@u
@t
= 
 · ∇×w (23)

where u is velocity vector and w is vorticity. Since w should vanish within truncation error,
this smoothing operator leaves the order of accuracy unchanged, but it does not resolve the
instability.
As an alternative, other choices of discretization for truncation error terms were examined

and they turned out to resolve the instability. They are

�x�y2
@3u
@x@y2

=
1
24
(28�x�2y − 4�2x�x�2y)unj; k (24)

�x2�y
@3v
@x2@y

=
1
24
(28�2x�y − 4�2y�2x�y)vnj; k (25)

Now every eigenmode, Figure 6(b) lies on the unit circle and the fourth-order scheme with
corrected discretization is neutrally stable on non-square grid. However, it is very di�cult
to explain the role of new discretizations. It is worth observing, however, that the new dis-
cretization (24) involves data of points (j± 3=2; k; k ± 1) that are not used in (22).
Figure 7 compares the dispersion errors of three-level second-order, four-level second-order

and three-level fourth-order upwind leapfrog schemes. Four-level second-order scheme shows a
better resolution than three-level second-order scheme and the three-level fourth-order scheme
has the best phase property.

2.5. Accuracy comparison of leapfrog schemes

Another leapfrog type scheme is Yee’s standard leapfrog scheme, mainly designed for electro-
magnetics and acoustics. It stores pressure and velocities at cell centre and edges, respectively.
Its accuracy is comparable to the upwind leapfrog method. Nguyen [6] compared phase proper-
ties of these schemes and concluded that �oating point operations per cell of two-dimensional
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Figure 7. Dispersion errors of second- and fourth-order upwind leapfrog methods. Courant numbers,
�x= �y=1=4: (a) three-level second-order; (b) four-level second-order; and (c) three-level fourth-order.
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Figure 8. Explanation of initial value problem for comparison of leapfrog type schemes.

second-order upwind leapfrog method is more than that of Yee’s scheme but its accuracy
is higher than Yee’s schemes. Therefore, the e�ciency of both schemes are comparable. To
con�rm that comparison, a simple initial value problem is devised as shown in Figure 8.
Initial values are

p(x; y) = exp
(
− ln 2
52
[x2 + (y − 20)2]

)

u(x; y) = v(x; y)=0

The positions of the points A, B and C are (20,20), (40,20) and (60,20). Ghost cells are
generated with mirror images for wall boundary treatment. The courant numbers (�x; �y) are
1
4 . Pressure values are measured at each point and compared on various grid sizes. Measuring
times of the points A, B and C are 45, 50 and 70. Figure 9 presents the grid convergence his-
tories of each point. The results of the second-order schemes (Figure 9(a), (c), (e)) show very
similar accuracy level. However, the fourth-order results (Figure 9(b), (d), (e)) demonstrate
distinct deviations between two results. The fourth-order upwind leapfrog scheme updates
accurate solutions with even coarse grid.

3. UPWIND LEAPFROG METHODS IN POLAR CO-ORDINATES

In polar co-ordinate (r; �; t) with velocity components, u and v, the acoustic equations in
dimensionless form are

@p
@t
+
@u
@r
+
1
r
@v
@�
+
u
r
=0

@u
@t
+
@p
@r
=0

@v
@t
+
1
r
@p
@�
=0

(26)
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Figure 9. Grid convergence histories, circle: upwind leapfrog, square: Yee’s standard
leapfrog method: (a) Point A, t=45 order, second order; (b) Point A, t=45 fourth order;
(c) Point B, t=45 second order; (d) Point A, t=45 fourth order; (e) Point C, t=45

second order; and (f) Point A, t=45 fourth order.

Bicharacteristic version of these equations, aligned respectively along radial and circumferen-
tial directions, are

@
@t
(p± u)± @

@r
(p± u) + 1

r
@v
@�
=−u

r
(27)

@
@t
(q± v)± 1

r
@
@�
(q± v) + @u

@r
=−u

r
(28)

Compared with their Cartesian counterparts, these equations have source terms on the right-
hand side, which require special techniques to avoid exciting long-term instabilities. Those
techniques are described in Reference [9] in detail and omitted here. However, the source
term of Equation (28) is independent of the updated variables (q± v) and was discretized
time-reversibly by replacing the term, u=r with (unj−1=2; k + uj+1=2; k)=2rj; k .
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Figure 10. Second-order stencils for acoustics in polar co-ordinate: (a) (p± u) waves;
and (b) (q± v) waves.

For stable discretization, however, Equation (27) were transformed to Equations (29)

@
@t

(
p± r

rc
u
)
± @
@r

(
p± r

rc
u
)
+
1
r
@v
@�
=0 (29)

and the second-order discretizations based on the stencil, Figure 10(a) are

�t

(
p+

r
rj
u
)n+1=2
j+1=2; k

+ �t

(
p+

r
rj
u
)n−1=2
j−1=2; k

+ 2�r�r

(
p+

r
rj
u
)n
j; k

+ 2����vnj; k =0

�t

(
p− r

rj
u
)n+1=2
j−1=2; k

+ �t

(
p− r

rj
u
)n−1=2
j+1=2; k

− 2�r�r
(
p− r

rj
u
)n
j; k

+ 2����vnj; k =0

(30)

where �r =�t=�r and v�=�t=(r��). This stabilizing technique was also applied to the
fourth-order schemes in a similar way.

4. NUMERICAL EXPERIMENTS

The second- and fourth-order upwind leapfrog schemes developed in the previous sections
were applied to typical acoustic problems such as the piston problem and the acoustic scat-
tering from a cylinder to evaluate their applicability to real acoustic simulation.

4.1. Piston problem simulation

The acoustic wave produced by an oscillating piston with an axisymmetric in�nite ba�e
(Figure 11) was simulated to test the numerical scheme. This problem is governed by the
linearized axisymmetric Euler equations whose characteristic form is

@
@t
(p± u)± @

@x
(p± u) + @v

@y
= − v

y
(31)

@
@t
(p± v)± @

@x
(p± v) + @u

@x
= − v

y
(32)
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Figure 11. Geometry of axisymmetric piston problem.

The analytic solution for the magnitude of the pressure oscillations along the axis of symmetry
[10] is given as

P(x)
2�0a0U

=

∣∣∣∣∣∣sin

�fx
a0



√
1 +

(
r20
x

)2
− 1




∣∣∣∣∣∣ (33)

where P is the magnitude of pressure oscillation, U is the piston displacement magnitude, f
is its frequency and r0 is its radius. Equation (33) shows that the axial pressure magnitude is
function of f, r0 and x for given �0, a0 and U . For simplicity �0, a0 and U are set to one.
The axisymmetric equations also have a source term, −v=y which is independent of (p± u)
and it was discretized by central di�erencing. However, the source term of Equation (32) is
dependent on (q± v) and it requires a stabilizing technique described in Section 4. Three-level
second-order upwind leapfrog schemes were implemented for this experiment. The frequency
f is chosen as ten cycles per unit time and r0 equal to 1

10 of unit length. The computa-
tional domain is 06x61:0 and 06y61:0. Figure 12 shows the contour plot of acoustic �eld.
The grid size used for this computation and the Courant number were 120 × 120 and 1

2 ,
respectively. Most of the acoustic energy was transmitted along the axis of symmetry and a
smaller portion was radiated diagonally. Giles’ second-order boundary condition was imple-
mented at the far-�eld and little outgoing acoustic wave was re�ected. Pressure magnitudes
along the axis were compared with the analytic solution for various grid size in Figure 13
and the results exhibit good agreement with the analytic solution even on the coarse grid (8
cells per wavelength). As the grid is re�ned, the numerical results converged to the analytic
solution.

4.2. Acoustic scattering from a cylinder

One of the second computational aeroacoustics benchmark problems [11] was simulated to
test the fourth-order upwind leapfrog scheme in cylindrical coordinates. Pressure pulse initially
distributed in Gaussian propagates outside as time goes on and re�ected from a circular
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Figure 12. Pressure contour plot of piston problem. �x=�y= 1
12 ; t=3:0.
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Figure 13. Comparison of numerical pressure envelopes with analytic solution for various grid sizes.

cylinder. This example is explained in Figure 14 and the governing equations are

@p
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+
@u
@r
+
1
r
@v
@�
+
u
r
=0

@u
@t
+
@p
@r
=0 (34)
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r
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=0

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:505–523



520 C. KIM

x

y

r

θ

S

 

 

A

B

C

Figure 14. Geometry of acoustic scattering problems.

Figure 15. Pressure pulse contours of initial value problem simulation. 0:56r610:0, �r=1=14.

where u and v are the disturbed velocities in radial and azimuthal directions. Ghost cell
values are generated around the cylinder for the wall boundary condition and Thompson’s
characteristic boundary condition [12] was implemented at the far-�eld boundary. The given
initial values are

p(x; y) = exp
(
− ln 2
0:22

[(x − 4)2 + y2]
)

u(x; y) = 0; v(x; y)=0

(35)

As time goes on, pressure pulse propagates outward and is re�ected from the cylinder wall.
Pressure value was measured at three chosen points A(r=5; �=90◦), B(r=5; �=135◦),
C(r=5; �=180◦). Measuring time was from t=6 to t=10. Measured pressure values were
compared to analytic ones. Figure 15 presents contour plots of the results at t=4:0 and 6.0,
according to the fourth-order scheme with �r= 1

14 . When t=4:0, the wave front is re�ected
from the cylinder while most of the pressure pulse propagates outside. At later time (t=6:0)
the re�ected wave follows the main pulse and there is a continuous front around the cylinder.
Time histories of pressure at points (A, B and C) are shown in Figure 16.
The second-order results were presented by the solid line for various grid sizes (�r= 1

24 ;
1
32 ;

1
40 ) and the analytic solution was expressed by the dotted line in Figure 16(a). The numerical
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Figure 16. Pressure histories of (a) second- and (b) fourth-order scheme at point A(top), B(middle) and
C(bottom). Dotted line: analytic solution. 56t610, �r= 1

24 ;
1
32 and

1
40 .

result indicated some deviation from the analytic solution even on the �nest grid (�r= 1
40). On

the other hand, Figure 16(b) presents the fourth-order results on grids with (�r= 1
12 ;

1
16 ;

1
20 ).

The numerical solution on the coarsest grid (�r= 1
12) produced notable oscillations at point A

and C, but the numerical result with �r= 1
16 demonstrated good agreement with the analytic

solution. In order to con�rm that these results do in fact have the formal accuracy, the pressure
at one particular place and time was plotted against the second or fourth power of the mesh
size. Such a plot should yield a straight line which intecepts at �r=0 and it is considered a
deferred approach to the limit, the best numerical estimate of the analytic solution. The �rst
pressure minima (t=6:7) measured at point A are plotted in Figure 17 against �r2. The star
(*) on the vertical axis represents the analytic solutions although numerical solution converges
to a value not far from the analytic solution.
The fourth-order results are plotted in Figure 17(b) against �r4 in the range, 1=�r=14−30.

As indicated from the Fourier analysis, the errors are much lower and a grid-converged
solution is very close to the analytic one. To examine how well the wall boundary condition
works, the second pressure minimum values (t=8:6) are measured at point A and plotted
in Figure 18. Results indicated again that the fourth-order methods are more accurate and
convincing.
They seem to be headed rather precisely for the analytic solution, and the minute discrep-

ancy might be due to small errors in the wall boundary condition. It is conceded that neither
the starting procedure nor the surface boundary condition is beyond reproach, but their e�ect
appeared to be so small numerically that the code behaved for all practical purposes as if it
were fourth-order accurate.
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Figure 17. Grid convergence studies for the pressure of Point A at the �rst pressure minimum:
(a) second-order; and (b) fourth-order. ∗: Analytic solution.
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Figure 18. Grid convergence studies for the pressure of Point A at the second pressure
minimum: (a) second-order; and (b) fourth-order. ∗: Analytic solution.

5. CONCLUSION

One-dimensional version of the upwind leapfrog method was successfully extended to multi-
dimensional acoustics. The stability limitation of two-dimensional higher-order scheme was
overcome and it is stable even on non-square grid as well as for the system of equations
having source term proportional to the solution. Furthermore, numerical experiment results of
several test cases also assure the accuracy of the upwind leapfrog scheme. Since the stencil
of the higher-order scheme, however lies over one grid cell, further investigation on the
computational boundary treatment is needed if a higher-order accuracy is to be maintained.
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